Module PGP(Pretty Good Privacy)

IUT Béziers, dépt. R&T © 2012-2023 http://www.borelly.net/ Christophe.BORELLY@umontpellier.fr

Généralités

- PGP (Pretty Good Privacy) a été créé par Phil Zimmerman en 1991.
- RFC 1991 (1996), RFC 2440 (1998) puis RFC 4880 (2007).
- Il permet de crypter/décrypter des fichiers, des messages email et aussi d'authentifier des utilisateurs.
- PGP fourni aussi les fonctions de génération de certificat et de signature électroniques.
- PGP utilise de la cryptographie symétrique (rapidité du chiffrement) et de la cryptographie asymétrique (sécurité de l'échange de clés).

Logiciels

- GnuPG (Gnu Privacy Guard) est la version Libre de PGP (RFC 2440).
 - http://www.gnupg.org/
- GPA: GNU Privacy Assistant
- Kleopatra (KDE): Certificate Manager and Unified Crypto GUI
- GPG4Win (GnuPG, Kleopatra et GPA)
 - http://www.gpg4win.org/

Trousseaux de clés

- Les clés sont stockées dans des fichiers pubring.pgp et secring.pgp (e.g. dans ~/.gnupg).
- Une clé privée ne peut pas être restaurée à partir d'un fichier secring.pgp.
- Si un utilisateur perd sa pass-phrase, sa clé est perdue !!!

Fonctionnement du cryptage

- Le cryptage fonctionne suivant le principe suivant :
 - Compression des données.
 - Création d'une clé secrète de session.
 - Cryptage des données compressées.
 - Cryptage de la clé de session avec la clé publique du destinataire.

Compression

- Cette étape permet de réduire le temps de transmission des données, et améliore également la sécurité.
- En effet, la compression détruit les modèles du texte (fréquences des lettres, mots répétés).
 Ces modèles sont souvent utilisés dans les analyses cryptographiques.

Chiffrement du message

- Une clé de session aléatoire est générée, et le message est chiffré par un algorithme symétrique (AES, CAST5, BLOWFISH, Camelia, 3DES, ...).
- La clé de session est chiffrée en utilisant la clé publique du destinataire (RSA, ELG, DSA, ECDH, ECDSA, EDDSA).

Décryptage

 Seul le destinataire d'un message crypté avec PGP peut décrypter la clé de session (car lui seul possède la clé privée associée à la clé publique qui a été utilisée pour crypter la clé de session) et donc par la suite le message.

Signature électronique

- Quand des données sont cryptées avec la clé privée d'un utilisateur, on peut vérifier l'identité de l'émetteur du message :
 - Si la signature peut être décryptée avec la clé publique de l'émetteur.
- En général, c'est un hash du message (message digest) qui est signé (taille fixe).

Certificat PGP

- Un certificat PGP contient au moins :
 - Un numéro de version
 - Une clé publique (RSA, DSA, ElGamal...)
 - L'identité du propriétaire
 - L'auto-signature des données
 - La période de validité
 - L'algorithme de chiffrement préféré (AES, CAST5, 3DES, ...).

Serveurs de clés PGP

- Ces serveurs permettent de publier et/ou récupérer une clé publique sous la forme d'un certificat PGP.
 - https://keyserver.ubuntu.com/, https://www.rediris.es/keyserver/, http://the.earth.li/pgp_lookup.html, ...
- Contrairement à une PKI X.509 (relation de confiance de type arborescente), il n'y a pas d'autorité centrale de certification, mais un grand rôle est donné à la proximité sociale (i.e. les amis de mes amis sont mes amis).

Niveaux de confiance

- Il y a 5 niveaux de confiance dans PGP :
 - Confiance ultime
 - Confiance complète
 - Confiance marginale
 - Aucune confiance
 - Inconnue

Validité d'une clé

- Confiance ultime
- Signée par 1 clé de confiance complete
- Signée par 3 clés de confiance marginale
- Le chemin des signatures de cette clé jusqu'à une clé de confiance ultime est inférieur à 5

Révocation de clé

- Une clé (certificat) PGP/GPG possède une période de validité.
- Cependant, on peut révoquer une signature sur une clé (ou la clé entière) pour diverses raisons (perte de confiance, compromission de la clé privée, perte de la pass-phrase, etc...).

S/MIME

- S/MIME (Secure/Multipurpose Internet Mail Extensions) est une norme de cryptographie et de signature numérique de courriels encapsulés au format MIME.
- S/MIME est un standard qui s'appuie sur les certificats numériques X.509.
- Outil: gpgsm
- Trousseau de clés : ~/.gnupg/pubring.kbx et ~/.gnupg/private-keys-v1.d/

Références

- http://www.gnupg.org
- http://www.gpg4win.org/
- http://www.gnupg.org/gph/en/manual.html
- http://en.wikipedia.org/wiki/PGP
- http://en.wikipedia.org/wiki/ GNU_Privacy_Guard